En 1858, Möbius hizo un sorprendente descubrimiento: encontró una superficie de una sola cara y un solo borde con sorprendentes propiedades: la «banda de Möbius».

Procedimiento:
Toma una tira de papel, haz una torsión y une los extremos de forma que puedas obtener la banda de la figura de la derecha. Ayudándote del lápiz dibuja una línea sobre ella recorriéndola en su totalidad. ¿Has cambiado de cara en tu recorrido? ¿Cuántas caras y cuántos bordes hay en tu banda?
Construye dos bandas de Möbius y corta cada una como indica el dibujo de arriba, a 1/2 y a 1/3 del borde. ¿Qué has obtenido en cada caso?
Comprueba que en esta banda se pueden resolver problemas que no tienen solución en un plano. Por ejemplo: «¿Se pueden unir tres casas con tres pozos con caminos que no se corten?».